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Thermal conductivity of one- and two-dimensional 
lattices 

E Atlee Jackson and Antonis D Mistriotis? 
Department of Physics, University of Illinois at Urbana-Champaign, 
1110 West Green Street, Urbana, IL61801, USA 

Received 21 June 1988 

Abstract. Numerical experiments were conducted to study the energy transfer through one- 
and two-dimensional non-linear lattices, with various anharmonicities and diatomic mass 
ratios, when they are placed between two thermal reservoirs. The existence and dependence 
of normal thermal conductivity on the number of particles in the lattice ( N  < 400) and the 
mass ratio is studied. In these lattices, an approximate transition is found to be related to 
the decay of a pulse travelling across the finite lattice. The threshold for the transition from 
infinite to normal thermal conductivity is also found to coincide with the value of these 
parameters for which the divergence of trajectories in every region of the phase space of the 
system becomes non-linear with time, in an interval shorter than the time a pulse needs to 
travel through the lattice. It is also found that the thermalconductivity of the two-dimensional 
lattices that were examined differs from that of similar one-dimensional lattices only quanti- 
tatively and not qualitatively as predicted by Peierls’ ‘Umklapp’ analysis. 

1. Historical background 

A first attempt to explain the thermal conductivity of solids (lattices) was made by Peierls 
[l] in 1929. He applied the concepts that had been developed by Boltzmann for the 
gas dynamics to phonons. This theory lacks the intuitive transparency of the original 
Boltzmann equation, because phonons cannot be localised with definite velocity as can 
the molecules in a classical gas. Nevertheless, the Boltzmann-Peierls equation has been 
widely used as a basis for understanding lattice thermal conductivity. 

Peierls’ theory, which is based upon Boltzmann’s Stosszahlansatz, assumes that 
phonons behave in a stochastic way without justifying the origin of such behaviour. The 
first attempts to verify the validity of the stochastic hypothesis in lattices were the 
numerical experiments conducted by Fermi and co-workers [2] in 1953. They searched 
for energy sharing between the linear normal modes, which is characteristic of irre- 
versible behaviour in non-linear lattices. Their discovery of the lack of the energy sharing 
among the modes raised a variety of questions. These early numerical experiments 
were followed by others, such as the one performed by Northcote and Potts [3], who 
discovered energy sharing among the normal modes in a lattice that consists of particles 
interacting with their first neighbours by means of a harmonic force plus a repulsive core. 

Later, other computations attempted to verify the validity of Fourier’s law (Fick’s 
law) of heat conduction and to determine the coefficient of thermal conductivity K of 
lattices 

( J ) =  -KVT (1) 
t Current address: Research Centre of Crete, PO Box 1527, Heraklio 71110, Crete, Greece. 
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where ( J )  is the total time-average energy flux. Among the earliest studies were those 
by Jackson and co-workers [4] and by Payton and co-workers [ 5 ] .  In these studies, one- 
dimensional non-linear lattices were coupled at their ends with two heat reservoirs of 
constant temperature. The temperature difference between the two reservoirs imposed 
an external temperature gradient on the lattice. If Fourier’s law is satisfied, the lattice 
has a coefficient of thermal conductivity, K ,  which is an intensive property of the system 
(i.e., is independent of the size of the system). It also exhibits an internal temperature 
gradient, where the temperature of a particle is defined as its average kinetic energy. In 
the next 15 years many similar computations were conducted [6], [7]. A summary of 
these results is presented in [SI. The conclusion presented there is that the ID non- 
linear (anharmonic) lattices, on which numerical experiments had until that time been 
performed, were not known to exhibit normal thermal conductivity. Another review of 
the molecular dynamical calculations of energy transport in lattices is given in [SI. A 
general review of relationships between non-linearities and irreversibility of non-linear 
lattices is given in [lo]. 

This series of disappointing results, which failed to present examples of non-linear 
lattices satisfying Fourier’s law, ended only recently. Mokross and Biittner [ 111 studied 
the thermal conductivity of one-dimensional diatomic ordered Toda lattices. They 
presented iesults that strongly indicate that this type of lattice has a normal thermal 
conductivity if the mass ratio is 0.50. Nevertheless, they did not sufficiently study the 
dependence of the total energy flux on the number of particles in the lattice to establish 
that the coefficient of thermal conductivity is, in fact, an intensive property of the lattice. 
We study this question in detail in S: 2. In addition to Mokross and Biittner’s results, 
Casati and co-workers [12] proposed another type of lattice that, as they showed by 
numerical calculations, also satisfied Fourier’s law, and they determined its thermal 
conductivity. This lattice consists of hard point particles, half of which (the even- 
numbered ones) are harmonic oscillators bound to their equally spaced lattice sites, 
while the odd-numbered particles are free particles (the ‘ding-a-ling’ model). This 
model, however, cannot be taken as a serious physical example because it is an extreme 
case, where the interaction between the particles in the lattice is not described by a 
potential that is a differentiable function. Hence, the KAM theorem [13] does not apply. 

The thermal conductivity of lattices was also studied from a different point of view 
by Miura [14] (reviewed in [lo]), who tried to interpret the Jackson-Pasta-Waters results 
by studying the decay of a pulse (‘soliton’) as it travels through the lattice. A discussion 
on the relationship between solitons and heat conduction in lattices can also be found 
in [15]. Extending these ideas in 83, we study the relationship between the thermal 
conductivity of the diatomic Toda lattice and the rate of decay of one pulse or two 
interacting pulses travelling through the lattice. 

Despite these numerous numerical and analytical studies of lattice thermal con- 
ductivity, there still remained a number of unresolved questions. An extended discussion 
of these questions can be found in [lo]. For example, the transition from an infinite to a 
finite thermal conductivity in the ‘thermodynamic limit’ (the number of particles N in 
the lattice is large, i.e., N-+ m), which takes place as a parameter of the lattice changes, 
has not up to now been sufficiently studied. We therefore examine this question in S: 2. 
Another unanswered question is ‘What type of dynamics produces the irreversible 
behaviour of systems that exhibit normal thermal conductivity?’ A consistent theory 
that relates the irreversibility of such systems to their dynamical behaviour in the phase 
space should also give a microscopic interpretation of their thermal conductivity. In 
particular, the prediction of the threshold for the transition from infinite to normal 
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thermal conductivity is a critical test for a theory that claims to present a dynamical 
justification of irreversibility. We examine this question in § 4,  where it is proposed that 
thermal conductivity is related to the local z-averaged rate of divergence of trajectories 
initiating in a neighbourhood of point (q,  p )  in the phase space, where z is a finite time 
interval. The numerical results presented in § 4 suggest that the thermal conductivity is 
infinite if there is a region of finite measure in the phase space of the system such that 
the divergence of two trajectories starting close to a point (q,  p )  in that region is linear 
with time for a time period z. The period z is the sound-transit time for the lattice. 
This criterion differs fundamentally from those based on Lyapunov exponents, which 
characterise the (irrelevant) asymptotic ( t  -+ 00) characteristics of nearby solutions. 

Finally, in § 5 ,  we compare the thermal conductivity of a two-dimensional lattice to 
the thermal conductivity of a ID lattice with the same type of interaction between their 
particles. In this way we check how important the influence of the dimensionality of the 
system is on its irreversible behaviour. 

Before presenting our results, we would like to discuss the question of whether the 
computer simulations of lattice dynamics are relevant to the real phenomena. Even 
though a high accuracy was maintained during our calculations, (e.g. the energy is 
conserved with an error of the order low4), one can argue that, if the divergence between 
two trajectories in a region of the energy surface is exponential with time, a computer- 
produced trajectory cannot stay close to a physical trajectory for a long period of time. 
However, this argument is not relevant in the present systems, both because of the very 
finite sound-transit time noted above and the continual stochastic interaction with the 
reservoirs. A computer simulation reproduces the stochastic behaviour of such a system 
and all related phenomena, which is all that is required. 

2. Numerical experiments on one-dimensional diatomic Toda lattices 

Recently, Mokross and Buttner [11] claimed that a diatomic Toda lattice exhibits an 
internal temperature gradient when its left- and right-end particles are coupled with two 
reservoirs of temperature, TL and TR, respectively, if the ratio of the masses of the two 
different types of particles in the lattice is r = ml/mz = 0.50. The same system was 
previously studied by Casati and Ford [16], who showed that for certain values of r and 
its total energy this system has large chaotic regions in its phase space. This strongly 
suggests that irreversible effects might be found in that system. Indeed, the internal 
temperature gradient shown in figure 1 is an indication that this lattice has normal 
thermal conductivity. Nevertheless, Mokross and Buttner only computed the total 
average energy flux through a few lattices, all of which had a small number of particles. 
Therefore, they did not establish that the thermal conductivity is an intensive property 
of the lattice, which is a basic feature of Fourier’s law. We will demonstrate this property 
here and, in the process, obtain information concerning the size of the lattice that is 
required for Fourier’s law to be valid. 

The lattice we study in this section consists of two types of particles with different 
masses. The odd-numbered particles have mass m, and the even-numbered have mass 
in2. They interact with their nearest neighbours with an exponential force. The end 
particles of this lattice are fixed. In other words, qo = qN + , = 0. The equations of motion 
for this system are, therefore, 

4 1  = P J r I  PI = -exp - (4rtl - 41) + exp - (41 - 41 - 1 )  ( 2 )  
where i = 1, . . . , N ,  r, = m1/m2, if i is odd and r, = 1.00, if i is even. The particles i = 1 



1226 E A Jackson and A D Mistriotis 

I I I I I 
0 20 LO 50 150 250 

I I 

Figure 1. Internal temperature gradient for a diatomic Toda lattice: (a)  N = 51, r = 0.50. 
TL = 100, TR = 10, max 6t = 0.20; ( b )  N = 299, r = 0.65, TL = 100, TR = 10, max 6t = 0.20. 

and i = N are coupled with two thermal reservoirs of temperature, TL and TR, 
respectively. This means that these particles collide with the particles of the cor- 
responding reservoir at the times ti. The velocity of each of the two end particles at time 
t, is given from a velocity distribution of the type 

f ( u >  = ( lUI /Tk)  exp(-u2/2W (3) 
where k is R and L, respectively. The sign of this velocity is determined randomly such 
that the two possible signs have the same probability. The factor /uI in formula (3) takes 
into account the fact that the fastest particles in the reservoirs have greater probability 
of interacting with the end particles of the lattice. Notice that the end particles of the 
lattice are constrained by the fixed boundary conditions to move close to its equilibrium 
point. Therefore, the probability of a particle in the reservoir colliding with the end 
particle of the lattice does not depend on their relative velocity, but only on the velocity 
of the particles in the reservoir. The interval 6t  = t,+, - ri is determined from a uniform 
distribution, g(St) = l/max at ,  defined for the values 0 < 6t < max 6t. The numerical 
method used for the integration of the equations of motion is the Nystrom method, 
which was suggested as the most appropriate for this case by Miura [13]. The initial 
velocities of the particles in the lattice were chosen such that their kinetic energy satisfies 
the temperature gradient, which is expected to be the steady state. In this way we reduce 
the time needed to reach the steady state. 

The first question we investigate is whether the system described in the previous 
paragraph has a thermal conductivity that is an intensive property. This means that the 
coefficient of thermal conductivity is independent of the number of particles in the 
lattice. For this reason we study the total time-averaged energy flux ( J )  through the 
lattice as a function of the number of particles N in the lattice. For these numerical 
calculations, TL = 100, TR = 10, r = ml/mz =0.50, and max 6t = 0.20. In this way the 
average temperature in the lattice is the same in all our computations. In table 1 and 
figure 2 the values of the coefficient of thermal conductivity K ,  which is defined as K = 
( J )  N / (  TL - TR)  for lattices of different number of particles N ,  are shown. Notice that 
in this paper the term ‘coefficient of thermal conductivity’ will be used for K ,  even in the 
case where it is not an intensive property of the lattice. The error bars shown in figure 2 
correspond to the amplitude of fluctuations of ( J )  around its mean value after the system 



Thermal conductivity of I and 2D lattices 1227 

Table 1. The values of the coefficient of thermal conductivity K = ( J ) N / ( T L  - TR) for the 
diatomic Toda lattice as a function of the number of particles N in the lattice and the mass 
ratio r.  T ,  = 100, TR = 10, max 6t = 0.20. 

N 0.50 0.65 0.75 0.85 

99 21 r 1 31 t 1 42 t 2 60 t 6 
199 25 t 2 36 2 3 55 t 2 91 t 3 
249 34 t 3 43 t 4 58 t 6 101 t 5 
299 34 r 3 43 t- 3 58 t- 5 108 t- 7 
349 35 2 3 50 t 5 68 t 4 118 t 2 
399 34 t 3 48 t- 3 64 t 6 133 t 2 

had reached the equilibrium (figure 3 ) .  (Results corresponding to other values of r are 
also presented in the same figure; they will be discussed in the following paragraph.) 
Our results show that the values of K are independent of the lattice length for N 2 250. 
This means that the coefficient of thermal conductivity is an intensive property of the 
lattice for large N .  Therefore, the diatomic Toda lattice with mass ratio r = 0.50 exhibits 
normal thermal conductivity. In other words, it obeys Fourier’s law. 

It is known that the ID monatomic Toda lattice ( r  = 1.00) is an integrable system, so 
it doesnot obey Fourier’slaw, andit hasinfinite thermalconductivity. Hence, a transition 
takes place from infinite to normal thermal conductivity as the parameter changes 

K 

100 IC Y l  

Figure 2. The coefficient of thermal con- 
ductivity K = (J )N/ (  T, - TR) for the 
diatomic Toda lattice as a function of Nfor 

300 400 severalvaluesofthemassratior. TL = 100, 
TR = 10, max 6t  = 0.20. 

200 

N 
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Figure 3. The function ( J ) ( r )  = ( I / t )  J h  J ( t )  d t  for a diatomic Toda lattice, where r = 0.50. 
N = 399, TL = 100, TR = 10,maxat = 0.20.J(t)isthetotalinstantaneousenergyfluxthrough 
the lattice. The half distance between the two parallel lines in the figure corresponds to the 
error for the value of ( J ) .  

T 

from 1.00 to 0.50. To study this transition, we repeated the computations that we had 
conducted for the caSe r = 0.50 for the cases r = 0.65, r = 0.75, and r = 0.85, keeping 
max at,  TL. TR the same. The results of these numerical calculations are presented in 
table 1 and are pictorially shown in figure 2. There we see that as r increases the curves 
are gradually transformed in such a way that the value of K diverges as Nincreases. This 
clearly appears to be the situation when r = 0.85, while for the cases r = 0.65 and r = 
0.75, K shows a tendency towards a saturation value, but the existence of normal thermal 
conductivity cannot be proved unless longer lattices are considered. This suggests that 
there may be a critical value, r = r , ,  such that K ( N )  + x as N+ x, when r > r,. It is not 
possible to determine whether r, is smaller than 1.00 for N+ x because this requires 
computing the total time-averaged energy flux (J )  passing through very long lattices for 
many values of r .  Nevertheless, figure 2 gives a probable estimate for r,; namely, that it 
lies close to 0.75 if the results only up to N = 400 are taken into account. 

In the next two sections, we shall analyse and try to explain the transition from infinite 
to normal thermal conductivity in terms of the dynamical behaviour of the system. In 
other words, we will discuss the possible correlation between dynamical characteristics 
of the system and the value of its thermal conductivity. 

3. Decay of a pulse travelling through a diatomic Toda lattice 

It was suggested in [14] and [15] that information about the way in which energy is 
transferred through a lattice (diffusively or not) can be obtained by studying the decay 
of a solitary pulse travelling in the lattice. The basis of this idea is that the decay of a 
pulse takes place because of ‘irreversible’ energy sharing among the particles in the 
lattice and that the rate of decay indicates how fast the energy sharing occurs. If the 
lifetime of the pulse is shorter than the time it needs to travel through the lattice, then 
the energy is transferred by a diffusion process and the system is expected to satisfy 
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Figure 4. Decay of a pulse travelling through a diatomic Toda lattice A’ = 499: (a) r = 1.00; 
( b )  r = 0.85; ( c )  r = 0.75; (d )  r = 0.50. 

Fourier’s law. This idea is particularly applicable to systems that are perturbations of an 
integrable system that has soliton (non-dispersive, spatially localised) solutions. This is 
the case with the diatomic Toda lattice, which is examined here, if the mass ratio is used 
as the perturbation parameter, because the monatomicToda lattice (Y = 1.00) is known 
to have soliton-like solutions. 

The system for which we study the decay of a soliton is a ID diatomic Toda lattice 
with fixed ends. It consists of N = 499 particles. The even-numbered particles have mass 
1 and the odd-numbered, mass r. At time t = 0, particle i = 1 is given a large kinetic 
energy ( E  = N(TL + TR)/2), where TL = 100 and T R  = 10. We then record the kinetic 
energy of every particle in the lattice after a time period t = 40. In this way we obtain 
figure 4(a-d), corresponding to r = 1.00, 0.85, 0.75, 0.50, respectively. Figure 4(a) 
shows a non-decaying pulse travelling through the lattice. This corresponds to a pulse 
that consists of essentially one soliton, which is a solution of the system for the case r = 
1.00. As r decreases, the rate at which the pulse decays increases. Figure 4(b) shows that 
for the case r = 0.85, the original pulse still retains a large part of its energy and can be 
recognised at t = 40. For r = 0.75 (figure 4(c)) at time t = 40, the pulse has decayed such 
that it cannot be distinguished from the other peaks of the kinetic energy when it is 
plotted as a function of the particle number. For r = 0.50 (figure 4(d)), we see that a 
large peak compared with the background still appears at t = 40, even though this lattice 
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Figure 5.  Decay of two pulses because of their collision in a diatomic Toda lattice. N = 199, 
r = 0.50: ( a )  before the collision at t = 12; ( b )  after the collision at t = 20. 

exhibits normal thermal conductivity, as was shown in § 2. This result raises the question 
of why this pulse does not contribute to the transfer of energy through the lattice in a 
non-diffusive way. 

To answer this question, we study the effect of collisions between two pulses. In 
figure 5 we see two pictures of a diatomic Toda lattice with 199 particles and Y = 0.50 at 
t = 12 and t = 20. This shows that the collision between the two pulses moving in opposite 
directions, shown in figure 5 ( a ) ,  results in their destruction (figure 5(b)). Figure 6 shows 
that this remains a strong effect when r = 0.75. In contrast, if r = 0.85 the two pulses 
survive the collision between them, as it is shown in figure 7. Therefore, the process of 
the decay of a pulse travelling through a lattice is more complicated than the situation 
that is studied in figure 4, where a pulse is travelling through a previously unperturbed 
lattice. In fact, collisions between pulses play an important role in the rate at which the 
lattice approaches its equilibrium state. 

The importance of the collisions between pulses to the energy sharing between the 

400 

‘k 

200 

D 

100 

0 0 0 

I i 

Figure 6 .  Two pulses travelling through a diatomic Toda lattice had already substantially 
decayed before their collision. The collision intensifies even more the energy sharing. N = 
199, r = 0.75: (a) before the collision at t = 12; (b) after the collision at f = 20. 
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Figure 7. Two pulses colliding in a diatomic Toda lattice. N = 199, r = 0.85: (a) before the 
collision at t = 8; ( b )  after the collision at t = 20. 

particles in the lattice can also be shown in a quantitative way. Two pulses, with initial 
energy Eo and 2E,/3, respectively (where E ,  = 6567), are considered travelling in a 
lattice that consists of N = 199 particles. The largest values, E ,  and E Z ,  of the kinetic 
energy as a function of the particle number at t = 12 and t = 20, respectively, are 
computed for several values of r (0.90,O. 85,0.80,0.75,0.70,0.65,0.60,0.55,0.50,0.40, 
0.30. 0.20, 0.10). In figure 8, the graphs of the functions E,(r ) /E ,  and EZ(r) /EO are 
presented. At t =20, the collision between the two pulses has already taken place, while 
for t  = 12, the two pulses have not yet collided for most values of r. For the cases where 
the collision of the pulses occurs before t = 12, the correct value for E,(r)  is taken to be 
the largest value of the kinetic energy at t = 12 in a lattice where only one pulse with 
energy equal to E ,  is considered as the initial condition. In this way, the influence of the 
collision on the decay of the pulses can be studied. Figure 8 shows that the function 

0 0.5 

r 

1.0 

Figure 8. The functions E , ( r ) / E O  
(circles) and E2(r) /Eo (crosses). E ,  
and E ,  are the largest values of the 
kinetic energy as a function of the 
particle number at t = 12 (before 
the collision) and t = 20 (after the 
collision). Eo is the kinetic energy 
of the largest of the two original 
pulses. 
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E,(r) /Eo,  which corresponds to t = 12, exhibits a strange behaviour. For 0.70 < r 
< 1.00, it decreases when r decreases, but for r < 0.70, it increases. The large value of 
E,(0.50)/Eo does not correlate with the fact that this lattice exhibits normal thermal 
conductivity for r = 0.50. On the contrary, the function E2(r) /Eo,  which corresponds to 
t = 20 when the collision has already occurred, is almost constant for 0.50 < r < 0.75 
fluctuating around 0.04 and then increases rapidly towards 1.00 when r > 0.75. This 
shows that a transition takes place for r just larger than 0.75. This is a good agreement 
with the value of rc, found in § 2. 

The study of pulses that travel without decaying through a previously unperturbed 
lattice, but which interact with each other, is clearly an interesting subject that requires 
further investigation. In the next section, we present another way to analyse the results 
of 8 2 about the thermal conductivity of the diatomic Toda lattice. 

4. The relationship between the thermal conductivity and the local rate of divergence of 
trajectories 

The rate of divergence of trajectories close to each other in the phase space has frequently 
been used to describe quantitatively the stochastic dynamical behaviour that is believed 
to be related to irreversibility. This relationship has been established for the asymptotic 
case t + CO, where the rate of divergence is described by the Lyapunov characteristic 
exponents. Nevertheless, thermodynamic behaviour far from equilibrium is related to 
the dynamic behaviour of the system during a finite time period of length t. The period 
z is a characteristic time for the examined system. For example, in the case we study, 
the lattice thermal conductivity, z, is the sound-transit time of the lattice. 

In this section we present a method that uses the average rate of divergence over a 
time interval t between trajectories initiating in a neighbourhood of a point (q,  p )  of the 
phase space to determine whether a system exhibits irreversible behaviour. This rate of 
divergence between trajectories is called local because it depends on the point (q ,  p )  and 
the magnitude of z. By defining this local rate of divergence we can study the short-time 
dynamical behaviour of the system, which is essential for thermodynamics far from 
equilibrium. If there is a region of positive measure in the phase space where any two 
trajectories diverge linearly with time for a time period of t, the loss of correlation 
between an initial and the corresponding final state of this system takes place slowly for 
time periods less than z. Therefore we expect that such systems do not exhibit normal 
irreversible behaviour. In particular, they do not obey Fourier’s law. This is not a rare 
situation. Nearly integrable systems have trajectories that diverge at a very slow rate. 
Therefore they exhibit a persistence of regular motion even in the chaotic region of 
their phase space. This persistence of regularity was observed in several numerical 
experiments [17, 181, and is discussed in a more general approach in [19] in relation to 
Nekhoroshev’s theorem [20]. 

We can test this idea by numerically calculating the size of the regions in the phase 
space of a lattice with a large number of particles, N ,  where the divergence is approxi- 
mately linear with time over an interval, t. z is taken to be the sound-transit time across 
this lattice. For longer time intervals the correlation function is dominated by external 
effects and, therefore, equation (4) cannot be used. 

Whether the local rate of divergence is approximately linear with time can be 
determined numerically by the following method. The distance, d ( t ) ,  between two 
trajectoriesstartingintheneighbourhoodof apoint, (q ,  p ) ,  is approximatedfor 0 < t < z 
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by a function of the formA(q,p,  z) exp(k(q,p, z) t )  using the least-squares method. We 
also approximate the function d( t )  by a linear function of the form B(q ,  p ,  z) t + 
C ( q , p ,  z). In this way the rate of increase of the function d ( t )  is compared with two 
possible extreme cases of rate of divergence, the linear and the exponential. If d( t )  is 
approximated better by the linear function than by the exponential; in other words, if 

then the z-averaged divergence is considered linear with time. This test is performed 
numerically for a large number, M ,  of points, ( q , p ) ,  lying in the chaotic part of a surface 
of section. The ratio, M,/M,  where M O  is the number of points out of the total, M ,  for 
which the z-averaged rate of divergence is linear with time, gives an estimate of the 
measure of the part of the phase space where the local rate of divergence is linear. We 
expect to find M O  = 0 for the lattices that satisfy Fourier’s law and MO # 0 otherwise. 

We apply this idea to the lattice examined in 9 2. Figure 2 suggests that N should be 
larger than 300 in order to approach the thermodynamic limit’, which means that t 
should be taken to be larger than 60. Unfortunately, this computation requires very long 
computing time and it was beyond the capability of the facilities used. For this reason. 
N is reduced to 11 and z was taken to be 10. A lattice of length N = 11 is the shorter size 
system, which we expect to retain lattice characteristics. The time length z = 10 is 
chosen, longer than the sound-transit time of the lattice with N = 11, but of the same 
order of magnitude with the sound-transit time for the long lattices ( N  = 300). By this 
choice we attempt to find results valid also for the longer lattices and, on the other hand, 
to avoid allowing the distance between the two trajectories to become the same size as 
the boundaries of the lattice phase space. We expect that the ratio M ( , / M ,  found this 
way, will be larger than the N = 300 result M o / M ,  because the larger the number of 
particles in the lattice, the easier it is for the chaotic behaviour to appear. Hence, the 
function M;7 ( r ) / M  is an upper bound for the function MO(r) /M.  

The ratio M,!,/M is computed for several values of r (0.30, 0.40, 0.50, 0.65, 0.75, 
0.85).  The energy, E ,  was taken equal to l l ( T L  -k T R ) / 2  = 605. The M points were 
produced in the following way. A trajectory on this energy surface was numerically 
integrated for a time period long enough to produce a set of a few thousand points on a 
2 0 ~  surface of section. Then, M = 150 points were chosen randomly from this set. Figure 
9 shows the results of this computation. This figure shows that the function M b ( r ) / M  
remains almost constant for r < 0.65, fluctuating around the value 0.10. When Y becomes 
larger than a critical value rk , which is close to 0.75, M b ( r ) / M  starts increasing rapidly 
toward the value 1.00 at r = 1.00. It appears, therefore, that the graph of the function 
Mh(r)/M presents a transition that takes place at r = rk. This result correlates with the 
results presented in figure 2, which indicates that there may be a transition from infinite 
to normal thermal conductivity for a value of r = r,, close to 0.75. As we explained 
earlier, M,(r)/M is expected to be smaller than Mi’,(r)/M. Therefore, M 0 ( r ) / M ,  which 
corresponds to N 2 300, is expected to be similar to the broken curve of figure 9. Notice 
also, the broken curve of figure 4 is very similar to the graph of the function E2(r) /E0 of 
figure 8 for r > 0.5. It appears, therefore, that there is an approximate agreement 
between the ideas presented in this section and the numerical results presented in 9 9  2 
and 3. Notice that if k ( q , p ,  z) t 4 1, the test described by equation (4) has no meaning, 
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Figure 9. The measure M,,/Mof the 
part of the chaotic region where the 
local rate of divergence is linear 
with time as a function of the mass 
ratio r for a diatomic Toda lattice 

r f o r N =  11 and t = 10. 

because an exponential with small exponent differs little from a linear function. This 
influences the value of the function M b ( r ) / M ,  but not the value of r:.  

These results provide one more indication that the non-linear divergence of tra- 
jectories in the phase space, if it takes place in a finite period of time, is an essential 
characteristic of the dynamics that produces irreversibility. It is essential that this non- 
linear divergence take place in finite time, comparable to the sound-transit time of the 
lattice, and not at the limit t+ x .  This is true for several reasons. First, it is known 
that there are systems with positive Lyapunov exponents that do not exhibit normal 
thermodynamic behaviour (e.g. the billiard model with periodic boundary conditions 
has an infinite diffusion coefficient in the case of ‘infinite horizon’, even though its K- 
entropy is positive). Secondly, the asymptotic (t+ x )  behaviour of a finite system cannot 
be responsible for its non-equilibrium behaviour. 

5. Thermal conductivity of a two-dimensional lattice 

The failure of many numerical experiments to verify Fourier’s law was sometimes 
attributed to the fact that these experiments were conducted on ID lattices. It is easy to 
show that the restriction to I D  lattices occasionally creates unnatural situations. A well 
known example is the case of free hard spheres that interact with each other only by 
elastic collisions and are bound in a box (gas model). If this system is ID it is integrable, 
while in 2~ it is chaotic. Correspondingly, the energy conduction through such a system 
is dramatically modified by the change in dimensions. On the other hand, we should not 
expect that dimensionality will dramatically influence all types of systems, as it does in 
the case of the gas model. Thus, a harmonic lattice is integrable, independent of its 
dimension. This is very important because for low energies all lattices behave approxi- 
mately like a harmonic lattice and, therefore, do not exhibit irreversibility. Hence, if the 
average temperature, T.  of the lattice is considered as a parameter, a transition from 
infinite to normal thermal conductivity takes place as Tis increased, in a manner similar 
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V Figure 10. A ?D lattice with fixed 
boundary. 

where j = 0, . . . 3 and i = 0 ,  . . . N + 1. qx,o,, qy,o,, q x , ( N + i ) j )  q y , ( ~ + i ) , ,  qx,[o, q y , i o ,  q x . 1 3 ,  

and qy,i3 are taken to be zero (fixed edges). The two ends of this lattice are coupled to 
two heat reservoirs with temperatures TL and TR, respectively. The x and y components 
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Table 2. The values of the coefficient of normal thermal conductivity for a ID ( K I D ) ,  and a 
ZD (K2D) lattice with harmonic plus quartic interaction, E = 4, TL = 1, TR = 20, max 6t = 
0.70, D = 1.0. 

n Kl D &D 

10 
20 
30 
45 
60 

120 
200 
300 

6.0 t 0.3 
12.2 f 0.5 
17.5 t 0.8 
24.0 t 1.0 
29.0 t 2.0 
51.0 t 3.0 
76.0 ? 4.0 
88 0 i 4.0 

7.1 t 0.3 
12.1 t 0.5 
18.0 t 1.0 
24.0 t 1.0 
27.0 t 2.0 
42.0 t 3.0 

of the velocity of the two particles at each end of the lattice, at the moments when they 
collide with the particles of the reservoirs, are chosen from the distribution (3). The time 
of interaction of the end particles with the reservoirs is determined from a uniform 
distribution in the same way as in Ei 2. The total time-averaged energy flux, divided by 
the width of the lattice (here by 2), was calculated for several different lengths of the 
lattice. For these computations, E = 6, TL = 1, TR = 20, max 6t = 0.70, and D = 1. 
These results are presented in table 2 and figure 11, where they are also compared with 
the total energy flux of a one-dimensional lattice with the same type of interaction. The 
equations of motion for the one-dimensional lattice are 

4 , = p i  P I  = - 2 q l + q f + l  + q f - l  +&E[(q,+l + n - 4 1 > 3 - ( q l + D - q f - 1 ) 3 1  (6) 
where i = 0, . . . , N + 1. qo and qv+l are taken to be zero. The values of the parameters 
E ,  Tl,, TR, D ,  and max 6t for the ID case are the same as for the 2~ lattice. 

The results presented in figure 11 and table 2 do not show any qualitative difference 
in the thermal behaviour between the ID and the 2D lattice. For the lattice lengths 
examined, normal thermal conductivity was not observed in both cases. It is true that 
the coefficient of thermal conductivity is slightly smaller for the 2~ lattice than for the ID 
when the external temperature gradient is the same, but this is a slight, quantitative, 
difference. 

We also briefly studied the dependence of the thermal conductivity of the 2~ lattice 
on its width. For a short lattice ( N  = 30), it was found that the influence of the width is 

Figure 11. The coefficient of ther- 
n a i  coiiductivitya4afunctionofrhe 
length of the lattice. !V, for a ID 
(open circles) and a 2~ (full circles) 
lattice with harmonic plus quartic 
interaction: E = $; T,- = 1; T, = 20. 
niax 6t  = 0.70: D = 1. 

0 100 200 
N 
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not very significant for the type of lattice we have studied. More specifically, the total 
time-averaged energy flux ( J ) ,  divided by the width, is 10.9 for lattice which is five 
particles wide and 11.4 for a two-particle wide lattice. For these results, E = 4, TL = 1, 
TR = 20, max 6t = 0.70, and D = 1. 

Therefore, the importance of the dimensionality can vary for different types of 
interaction. In the example presented here, the result of the influence of the dimen- 
sionality on the thermal conductivity is quantitative, while for the hard-spheres system 
it is qualitative, and for the harmonic case dimensionality is not important at all. 
Nevertheless, we generally expect that higher dimensionality facilitates the appearance 
of normal thermal conductivity because it permits an easier diffusive transfer of energy 
through the lattice. 

The results presented in this section have a direct bearing on Peierls’ theory con- 
cerning the importance of Umklapp processes in lattice thermal conductivity [21]. His 
theory, based on the use of Boltzmann’s Stosszahlansatz, predicts that ‘Umklapp’ 
processes are necessary for a finite coefficient of thermal conductivity in lattices. It can 
be easily shown that three-phonon ‘Umklapp’ processes, which were the basis of Peierls’ 
theory, cannot occur in monatomic ID lattices. However, the numerical calculations 
presented in 8 2show that there are ID lattices that exhibit aregular thermalconductivity. 
The ‘Umklapp’ theory of heat conduction predicts a qualitative difference between the 
ID and 2~ systems, while the results presented in this section show only a small (about 
20%) quantitative difference between these two dimensionalities. Similar insensitivities 
have been reported by Rich and co-workers [22] and Nakazawa [6] (see also the review 
in [ 101). 

‘Umklapp’ processes are not a realistic picture of the dynamics of lattices that exhibit 
irreversible behaviour. The supposed importance of this process arises from Peierls’ 
attempt to apply Boltzmann‘s Stosszahlansatz for gases to a system of phonons. Even 
though this theory has great historical importance, and some gas-based intuitive appeal, 
it is now known that there are essential differences between the two systems. In other 
words, systems that exhibit approximate phonon solutions are nearly integrable systems. 
On the other hand, a gas model in two dimensions is a chaotic system. As a consequence, 
an analogy between the two systems cannot be established because near integrability 
can greatly influence the dynamical behaviour of a system in a finite period of time, as 
was also explained in 0 4. It was pointed out there that for phenomena far from thermal 
equilibrium, like thermal conductivity, the short-time behaviour of the system is 
important. Hence, the description of the diffusion of energy through a lattice in terms 
of weakly interacting (random-phased) phonons can be misleading. 

6. Conclusion 

The purpose of this work was to investigate the thermal conductivity of lattices from 
several points of view. First, the thermal conductivity of ‘long’ ( N  400) ID diatomic 
Toda lattices was studied numerically. It was shown that, for certain values of the ratio 
of the masses of the two types of particles in the lattice, the coefficient of thermal 
conductivity becomes an intensive property of the system for these lattices. These 
numerical results indicated a critical mass ratio, r,, required for the transition from 
infinite to normal thermal conductivity in the present lattices. More research involving 
longer lattices is needed to determine whether r, is actually bounded below one, or 
whether it tends to unity as N becomes very large. 
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An attempt was made to understand this transition by studying the decay of a 
pulse travelling through the lattice. A relationship exists between the lattice thermal 
conductivity and the rate of decay of pulses travelling through the lattice. Collisions 
between solitary pulses were found to influence their rate of decay critically. Figure 8 
shows how the decay of pulses is influenced by the mass ratio. 

Another attempt was made to analyse the transition from infinite to normal thermal 
conductivity by relating it to the local rate of divergence of trajectories in the phase 
space. The thermal conductivity is related to the local rate divergence of a very long 
lattice. To facilitate the computations, the lattices on which they were conducted were 
considerably shortened (11 particles long). Nevertheless, a fair quantitative agreement 
was found between the critical value of the mass ratio calculated this way and the one 
which was found from the direct computations of the thermal conductivity. 

Finally, we studied the influence of both the dimensionality and the lattice length on 
the thermal conductivity. The thermal conductivity of a ZD lattice with harmonic plus 
quartic interaction was numerically calculated and it was compared to the thermal 
conductivity of a ID lattice with the same type of interaction. The coefficient of thermal 
conductivity of the 2D lattice was found to be smaller (approximately 20%) than that of 
the ID lattice, but neither case exhibits a normal thermal conductivity. These results give 
further evidence that Umklapp processes are not generally relevant to the study of 
thermal conductivity in lattices. 
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